3 Comment on “ Nonextensive hamiltonian systems follow Boltzmann ’ s principle not Tsallis statistics - phase transition , second law of thermodynamics ” by Gross

نویسنده

  • Qiuping A. Wang
چکیده

Recently, Gross claims that Boltzmann entropy S = k lnW is valid for any system at equilibrium, so that Tsallis entropy is useless in this case. I comment on some arguments forwarded to reach this conclusion and argue that the additive energy formalism of nonextensive statistics is not appropriate for the fundamental study of the theory for nonadditive systems. PACS : 02.50.-r, 05.20.-y, 05.30.-d,05.70.-a In his recent papers[1, 2, 3], Gross wrote “Boltzmann entropy is well defined, ...independently whether it is extensive or not... the eventual nonextensivity of Hamiltonian systems does not demand any exotic entropy at equilibrium”, “there is no alternative to the microcanonical Boltzmann statistics and to our geometrical foundation of equilibrium statistics”, “Therefore, for closed Hamiltonian many-body systems at statistical equilibrium, extensive or not, the thermo-statistical behavior is entirely controlled by Boltzmann’s principle...” and “nonextensive Hamiltonian systems do not demand a new entropy formalism like that by Tsallis”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on “ Nonextensive hamiltonian systems follow Boltzmann ’ s principle not Tsallis statistics - phase transition , second law of thermodynamics ” by Gross

Recently, Gross claims that Boltzmann entropy S = k lnW is valid for any system at equilibrium, so that Tsallis entropy is useless in this case. I comment on some arguments forwarded to reach this conclusion and argue that the additive energy formalism dominating nonextensive statistics is not appropriate for the fundamental study of the theory for nonadditive systems. PACS : 02.50.-r, 05.20.-y...

متن کامل

Hamiltonian systems follow Boltz - mann ’ s principle not Tsallis statistics . – Phase Transitions , Second Law of Thermodynamics

Boltzmann's principle S(E, N, V) = k ln W (E, N, V) relates the entropy to the geometric area e S(E,N,V) of the manifold of constant energy in the N-body phase space. From the principle all thermo-dynamics and especially all phenomena of phase transitions and critical phenomena can be deduced. The topology of the curvature matrix C(E, N) (Hessian) of S(E, N) determines regions of pure phases, r...

متن کامل

A Comment on Nonextensive Statistical Mechanics

There is a conception that Boltzmann-Gibbs statistics cannot yield the long tail distribution. This is the justification for the intensive research of nonextensive entropies (i.e. Tsallis entropy and others). Here the error that caused this misconception is explained and it is shown that a long tail distribution exists in equilibrium thermodynamics for more than a century.

متن کامل

1 9 Ju n 20 03 A New Thermodynamics , From Nuclei to Stars

Equilibrium statistics of Hamiltonian systems is correctly described by the microcanonical ensemble. Classically this is the manifold of all points in the N −body phase space with the given total energy. Due to Boltzmann's principle, e S = tr(δ(E −H)), its geometrical size is related to the entropy S(E, N, · · ·). This definition does not invoke any information theory, no thermodynamic limit, n...

متن کامل

] 1 6 Ju n 20 05 Dynamical Correlations as Origin of Nonextensive Entropy

We present a simple and general argument showing that a class of dynamical correlations give rise to the so-called Tsallis nonextensive statistics. An example of a system having such a dynamics is given, exhibiting a non-Boltzmann energy distribution. A relation with prethermalization processes is discussed. 1 Generalized statistics and correlations In the recent paper by J. Berges et al. [1], ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003